重生学神有系统

一碗酸梅汤

首页 >> 重生学神有系统 >> 重生学神有系统最新章节(目录)
大家在看王妃每天想和离 年代1960:穿越南锣鼓巷, 四合院:苟在轧钢厂保卫科很舒服 神明降世,看见血条的我杀疯了! 重生,从亲奶奶诬陷我偷钱开始 考公失败,我转身进入省委组织部 重生:红色仕途 四合院:从1958开始 四合院:何雨柱的平凡一生 穿越第一件事,截胡秦淮茹! 
重生学神有系统 一碗酸梅汤 - 重生学神有系统全文阅读 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 好看的都市言情小说

第158章 查岗?

上一章书 页下一章阅读记录

如果说“感知机”是单个的神经元,那么“多层感知机”就是将分散的神经元,连接成了网络。

在输入层和输出层之间,再加入若干层,每层若干个神经元。

然后每一层的每个神经元,与下一层的每个神经元,都通过权重参数建立起连接……

层与层之间,完全连接。

也就是说,第i层的任意一个神经元,一定与第i+1层的任意一个神经元相连。

这就是多层感知机,简称MLP。

但仅仅简单组合在一起,还不算真正的“人工神经网络”,必须对“感知机”的基本结构,做出一定的改进。

首先,必须加入隐藏层,以增强模型的表达能力。

隐藏层可以有多层,层数越多,表达能力越强,但与此同时,也会增加模型的复杂度,导致计算量急遽增长。

其次,输出层的神经元允许拥有多个输出。

这样模型就可以灵活地应用于各种分类回归,以及其他的机器学习领域,比如降维、聚类等。

此外,还要对激活函数做出扩展……

前一篇“感知机”论文中,主要使用的是阶跃函数sign,虽然简单易用,但是处理能力有限。

因此神经网络的激活函数,一般使用其他的非线性函数。

备选的函数有很多:sigmoid函数,tanh函数,ReLU函数……

江寒逐一进行了分析。

通过使用多种性能各异的激活函数,可以进一步增强神经网络的表达能力。

对于二分类问题,只需要一个输出神经元就够了。

使用sigmoid作为激活函数,来输出一个0到1之间的数值,用来表示结果为1的概率。

对于多类分类问题,一般在输出层中,安排多个神经元,每个分类一个。

然后用softmax函数来预测每个分类的概率……

描述完结构之后,就可以讨论一下“多层感知机”的训练了。

首先是MLP的训练中,经典的前向传播算法。

顾名思义,前向传播就是从输入层开始,逐层计算加权和,直到算出输出值。

每调整一次参数值,就需要重头到尾重新计算一次。

这样运算量是非常大的,如果没有强大的硬件基础,根本无法支撑这种强度的训练。

好在现在已经是2012年,计算机性能已经足够强悍。

前向传播无疑是符合直觉的,缺陷就是运算量很大,训练起来效率比较差。

与“感知机”的训练相比,MLP的训练需要引入损失函数和梯度的概念。

神经网络的训练,本质上是损失函数最小化的过程。

损失函数有许多种选择,经典的方法有均方误差、交叉熵误差等,各有特性和利弊。

整个训练过程是很清晰的。

先随机初始化各层的权重和偏置,再以损失函数为指针,通过数值微分求偏导的办法,来计算各个参数的梯度。

然后沿着梯度方向,以预设的学习率,逐步调整权重和偏置,就能求得最优化的模型……

写完这些就足够了,再多的内容,可以安排在下一篇文章里。

不过,江寒想了想,觉得这篇论文的内容,还是有点过于充实。

仔细琢磨了一下,干脆将其一分为二。

多层感知机的结构和前向传播的概述部分,单独成篇。

神经网络训练中,关于激活函数和损失函数讨论的部分,再来一篇。

然后分开投稿,这样不就可以多拿1个学术点了?

反正学术点又不看字数……

当然,这两篇论文都必须以前一篇的感知机为基础,分别进行阐述,而不能互为前提、互相引用。

这样就需要多动点脑筋了。

江寒又花了一个多小时,才将它们全都补充完整,并丰满起来。

接下来校队、润色一番后,翻译成英文,转换PDF……

投稿的时候,江寒仔细琢磨了一下,在三区里选了两家方向对口的期刊,投了出去。

没有选择影响因子更大的二区或一区期刊。

因为二区以上的期刊,虽然影响因子更高,发表后收获的学术点也多。

但发表难度太大,万一被打回来,再重新投递……

时间耽搁不起。

要知道,江寒只有三个月的时间。

一系列操作下来,差不多就到了10点半。

江寒脱掉外衣,去洗了个澡,然后换上睡衣。

忙了一下午带一晚上,直到这时才闲了下来。

然后他就想起了夏雨菲,也不知道她下午过得好不好,开不开心?

一股深切的思念,从心底涌出。

拿过手机,指纹解锁。

这才发现,有好多条未读微信。

写论文的时候太投入,根本听不到提示音。

点进夏雨菲的聊天界面,就看到了一排文字消息。

“在哪呢?”

“终于写完作业了,好累啊。”

“你在忙什么?”

“看来真的很忙,都没时间看微信了。”

“先睡了,明天还要上学……”

……

除了第一条是放学时间发来的,后面几条都来自10点之后,差不多5分钟一条。

“这傻姑娘,我没回复微信,也不说拨个电话或者语音通话……”

江寒叹了口气,发了个表情图过去。

夏雨菲很快就回复:“忙完了吗?”

江寒微微一笑。

这个时间她还没睡,莫非在一直等着我回复?

前一阵天天哄她上床,不会已经养成了习惯吧?

一天不哄,就睡不着……

“嗯,正准备休息,刚上床。”江寒回复。

夏雨菲:“那你赶紧休息吧,别太劳累了。”

江寒笑了笑,拨了个语音通话。

“喂?”夏雨菲秒接。

江寒声音温和:“想我了没?”

“没有。”

江寒微微一笑。

否认得这么干脆?

那就是想了。

女孩子的话,有时候就得反着听……

“想我你就打个电话,要不拨个语音通话,微信我有时不能及时看到。”江寒温和地嘱咐。

夏雨菲沉默了一小会儿,低声说:“我担心你在忙,别再耽误了你的正事……”

江寒笑了笑:“你要是一直都这么懂事,我可就有点舍不得欺负你了啊。”

夏雨菲脸一红。

他所说的“欺负”,不知道到底是哪种“欺负”?

那自己以后,到底是应该始终这么“懂事”,还是偶尔也“不懂事”一次呢?

“你在哪了?”夏雨菲不敢深想,就没话找话。

“酒店里。”江寒实话实说。

“嗯?”夏雨菲有点意外,“怎么没回寝室?”

“寝室里有点闹,我想专心研究点东西。”江寒回答。

“哪家酒店?”夏雨菲问。

“星河。”

“条件怎么样?”夏雨菲又问。

“还行。”江寒回答。

“你刚才说什么?”夏雨菲好像没听清楚。

“我说还行。”江寒稍微提高音量。

“什么?”夏雨菲仍然没有听清。

“信号怎么忽然变差了……”

那边嘀咕了一声,然后通话就突然中断了。

江寒正打算重拨,一个视频通话的邀请,忽然跳了出来。

视频……

不会是学人家查岗吧?

上一章目 录下一章存书签
站内强推剑来 玄鉴仙族 医妃刚穿越就扒了王爷,强宠偏爱 夺回身体后,崽子们全都黑化了 你一出租司机,比我们警察还能抓 莲花楼:少年江湖 穿越后被分家,搬空你家当 官道:从殡仪馆平步青云 穿成农家老姑娘,怀着崽崽去逃荒 天灾第十年跟我去种田 权宠天下王爷王妃又怀孕了 天下凶神 超A重生:帝国给我发对象 明星系列多肉小说 镇压武林:我就是朝廷鹰犬 名门艳旅 协议结婚,大佬靠读心把我拿捏了 赵氏嫡女 捡到一个生子系统后,我宠冠后宫 空间渔夫 
经典收藏穿越豪门之娱乐后宫 都市极乐后后宫 龙魂侠影 考公失败,我转身进入省委组织部 官场:救了女领导后,我一路飞升 四合院:开局嫂子秦淮茹 权力巅峰:从借调市纪委开始 重生后,我成了省委书记的女婿 四合院:你们越激动我越兴奋 重生:1977 四合院之跌宕人生 重生日常修仙 四合院:疯狂接触,吸取别人技能 股神传奇 穿越第一件事,截胡秦淮茹! 妙医圣手叶皓轩 四合院:惹我必倒霉 穿越四合院,开局入赘娶寡妇 我的1949从长白山开始 死亡亿次,我复制天赋杀穿万族! 
最近更新恋爱如风 拜托!我都重生了怎会再舔你啊 一重生就囤千亿物质 篮球之巅从大学到联盟第一人 流放边关当县令,你囤货自立朝廷 名臣后裔 禁止维度 躺平,从蓝星找媳妇生娃开始 竹匠 都市异能:失落与重拾的力量 回穿,卖掉宝藏富可敌国 逆位迷宫 让你当黑手套,你给人去城市化 求生:我的兵种叠加所有升级路线 神级预言家 四合院:签到助力科技腾飞 初见红着脸,再见红了眼 女朋友劈腿后,我在乡镇医院崛起 与影相伴,逐光而行 剑斩天机 
重生学神有系统 一碗酸梅汤 - 重生学神有系统txt下载 - 重生学神有系统最新章节 - 重生学神有系统全文阅读 - 好看的都市言情小说